

TPS54360

SLVSBB4-AUGUST 2012

60 V Input, 3.5 A, Step Down Converter with Eco-mode™

Check for Samples: TPS54360

FEATURES

- 4.5 V to 60 V (65 V Abs Max) Input Range
- Current Mode Control Converter
- 92-mΩ High-Side MOSFET
- High Efficiency at Light Loads with a Pulse Skipping Eco-mode[™]
- 146 µA Operating Quiescent Current
- 1 µA Shutdown Current
- 100 kHz to 2.5 MHz Fixed Switching Frequency
- Synchronizes to External Clock
- Adjustable UVLO Voltage and Hysteresis

- Internal Soft-Start
- Accurate Cycle-by-Cycle Current Limit, Thermal, OVP, and Frequency Foldback Protection
- 0.8-V 1% Internal Voltage Reference
- 8-Pin HSOIC with PowerPAD[™] Package
- –40°C to 150°C T_J Operating Range
- Supported by WEBENCH[™] Software Tool

APPLICATIONS

• 12-V, 24-V and 48-V Industrial, Automotive and Communications Power Systems

DESCRIPTION

The TPS54360 is a 60 V, 3.5 A, step down regulator with an integrated high side MOSFET. Current mode control provides simple external compensation and flexible component selection. A low ripple pulse skip mode reduces the no load supply current to 146 μ A. Shutdown supply current is reduced to 1 μ A when the enable pin is pulled low.

Under voltage lockout is internally set at 4.3 V, but can be increased using the enable pin. The output voltage startup ramp is internally controlled to allow a controlled start-up and eliminate overshoot.

A wide switching frequency range allows either efficiency or external component size to be optimized. Frequency foldback and thermal shutdown protects internal and external components during an overload condition.

The TPS54360 is available in an 8-pin thermally enhanced HSOIC PowerPAD[™] package.

40

TPS54360

SLVSBB4-AUGUST 2012

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Table 1. ORDERING INFORMATION⁽¹⁾

TJ	PACKAGE	PART NUMBER ⁽²⁾
–40°C to 150°C	8 Pin HSOIC	TPS54360DDA

For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) The DDA package is also available in tape and reel packaging. Add an R suffix to the device type (that is TPS54360DDAR).

DEVICE INFORMATION

PIN CONFIGURATION

HSOIC PACKAGE (TOP VIEW)

PIN FUNCTIONS

PIN		1/0	DECODIDION	
NAME	NO.	1/0	DESCRIPTION	
BOOT	1	0	A bootstrap capacitor is required between BOOT and SW. If the voltage on this capacitor is below the minimum required to operate the high side MOSFET, the output is switched off until the capacitor is refreshed.	
VIN	2	T	Input supply voltage with 4.5 V to 60 V operating range.	
EN	3	I	Enable pin, with internal pull-up current source. Pull below 1.2V to disable. Float to enable. Adjust the input undervoltage lockout with two resistors. See the Enable and Adjusting Undervoltage Lockout section.	
RT/CLK	4	I	Resistor Timing and External Clock. An internal amplifier holds this pin at a fixed voltage when using an external resistor to ground to set the switching frequency. If the pin is pulled above the PLL upper threshold, a mode change occurs and the pin becomes a synchronization input. The internal amplifier is disabled and the pin is a high impedance clock input to the internal PLL. If clocking edges stop, the internal amplifier is re-enabled and the operating mode returns to resistor frequency programming.	
FB	5	Ι	Inverting node of the transconductance (gm) error amplifier.	
COMP	6	0	Error amplifier output and input to the output switch current (PWM) comparator. Connect frequency compensation components to this pin.	
GND	7	-	Ground	
SW	8	I	The source of the internal high-side power MOSFET and switching node of the converter.	
Thermal Pad	9	-	GND pin must be electrically connected to the exposed pad on the printed circuit board for proper operation.	

TPS54360

SLVSBB4-AUGUST 2012

FUNCTIONAL BLOCK DIAGRAM

PRODUCT PREVIEW

SLVSBB4-AUGUST 2012

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		VALUE		UNIT	
		MIN	MAX		
	VIN	-0.3	65		
	EN	-0.3	8.4	-	
	BOOT		73		
input voltage	FB	-0.3	3	v	
	COMP	-0.3	3		
	RT/CLK	-0.3	3.6		
	BOOT-SW		8	V	
Output voltage	SW	-0.6	65		
	SW, 10-ns Transient	-2	65		
Electrostatic Discharge (HBM) QSS 009-105 (JESD22-A114A)			2	kV	
Electrostatic Discharge (CDM) QSS 009-147 (JESD22-C101B.01)			500	V	
Operating junction temperature			-40 to 150	°C	
Storage temperature			-65 to 150	°C	

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL INFORMATION

		TPS54360	UNITS	
		DDA (8 PINS)		
θ_{JA}	Junction-to-ambient thermal resistance (standard board)	42.0		
ΨJT	Junction-to-top characterization parameter	5.9	°C/M	
Ψ _{JB}	Junction-to-board characterization parameter	23.4		
θ _{JCtop}	Junction-to-case(top) thermal resistance	45.8	0/10	
θ_{JCbot}	Junction-to-case(bottom) thermal resistance	3.6		
θ_{JB}	Junction-to-board thermal resistance	23.4		

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
Power rating at a specific ambient temperature TA should be determined with a junction temperature of 150°C. This is the point where distortion starts to substantially increase. See power dissipation estimate in application section of this data sheet for more information.

SLVSBB4-AUGUST 2012

ELECTRICAL CHARACTERISTICS

 $T_J = -40^{\circ}C$ to 150°C, VIN = 4.5 to 60V (unless otherwise noted)

- 5 - 5	PARAMETER		MIN	ТҮР	MAX	UNIT	
SUPPLY V	OLTAGE (VIN PIN)						
	Operating input voltage		4.5		60	V	
	Internal undervoltage lockout threshold	Rising	4.1	4.3	4.48	V	
	Internal undervoltage lockout threshold hysteresis			325		mV	
	Shutdown supply current	EN = 0 V, 25°C, 4.5 V ≤ VIN ≤ 60 V		1.3	3.5		
	Operating: nonswitching supply current	FB = 0.83 V, T _A = 25°C		146	175	μA	
ENABLE A	ND UVLO (EN PIN)						
	Enable threshold voltage	No voltage hysteresis, rising and falling	1.1	1.2	1.3	V	
		Enable threshold +50 mV		-4.6		μA	
	Input current	Enable threshold –50 mV	-0.58	-1.2	-1.8		
	Hysteresis current		-2.2	-3.4	-4.5	uА	
INTERNAL	SOFT-START TIME			-	-	r	
	Soft-Start Time	f _{sw} = 500 kHz. 10% to 90%		1.5		ms	
	Soft-Start Time	$f_{SW} = 2.5 \text{ MHz}$, 10% to 90%		0.42		ms	
VOLTAGE	REFERENCE			••••			
	Voltage reference		0 792	0.8	0 808	V	
HIGH-SIDE	MOSFET		0.1.02	0.0	0.000		
	On-resistance	VIN = 12 V BOOT-SW = 6 V		92	190	mO	
ERROR AN	MPLIFIER			02	100	11122	
Littori				50		nΔ	
	Error amplifier transconductance (q.,)	$-2 \parallel A \leq \log \ln \leq 2 \parallel A \setminus \log \ln = 1 \setminus$		350		uMhos	
	Error amplifier transconductance (g _M)	2 µ/(< 100m) < 2 µ/(, * 00m) = 1 *		000		μινιτιοσ	
	soft-start	$-2 \ \mu\text{A} < I_{\text{COMP}} < 2 \ \mu\text{A}, \ V_{\text{COMP}} = 1 \ \text{V}, \ V_{\text{FB}} = 0.4 \ \text{V}$		77		µMhos	
	Error amplifier dc gain	V _{FB} = 0.8 V		10,000		V/V	
	Min unity gain bandwidth			2500		kHz	
	Error amplifier source/sink	V _(COMP) = 1 V, 100 mV overdrive		±30		μA	
	COMP to SW current transconductance			12		A/V	
CURRENT	LIMIT	L					
		All VIN and temperatures, Open Loop	4.5	5.5	6.8		
	Current limit threshold	All temperatures, VIN = 12 V, Open Loop	4.5	5.5	6.25	А	
		VIN = 12 V, T _A = 25°C, Open Loop	5.2	5.5	5.85		
	Current limit threshold delay			60		ns	
THERMAL	SHUTDOWN		1		1		
	Thermal shutdown			176		°C	
	Thermal shutdown hysteresis			12		°C	
TIMING RE	SISTOR AND EXTERNAL CLOCK (RT/CLK I	PIN)	1		1		
	Switching frequency range using RT mode		100		2500	kHz	
f _{SW}	Switching frequency	R _T = 200 kΩ	450	500	550	kHz	
	Switching frequency range using CLK mode		160		2300	kHz	
	Minimum CLK input pulse width			15		ns	
	RT/CLK high threshold			1.55	1.7	V	
	RT/CLK low threshold		0.5	1.2		V	
	RT/CLK falling edge to SW rising edge delay	Measured at 500 kHz with RT resistor in series		55		ns	
	PLL lock in time	Measured at 500 kHz		78		μs	

DDA (R-PDSO-G8)

PowerPAD [™] PLASTIC SMALL-OUTLINE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com>.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. This package complies to JEDEC MS-012 variation BA

DDA (R-PDSO-G8)

PowerPAD [™] PLASTIC SMALL-OUTLINE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com>.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. This package complies to JEDEC MS-012 variation BA