<u>Voltage Regulator</u> - Low Dropout, Low Iq, Wide Input

300 mA

The NCV8718 is 300 mA LDO Linear Voltage Regulator. It is a very stable and accurate device with ultra-low quiescent current consumption (typ. 4 μ A over the full temperature range) and a wide input voltage range (up to 24 V). The regulator incorporates several protection features such as Thermal Shutdown and Current Limiting.

Features

- Operating Input Voltage Range: 2.5 V to 24 V
- Fixed Voltage Options Available: 1.2 V to 5 V (upon request)
- Adjustable Voltage Option from 1.2 V to 5 V
- Ultra-Low Quiescent Current: typ. 4 µA over Temperature
- ±2% Accuracy Over Full Load, Line and Temperature Variations
- PSRR: 60 dB at 1 kHz
- Noise: typ. 36 μV_{RMS} from 100 Hz to 100 kHz
- Stable with Small 1 µF Ceramic Capacitor
- Soft-start to Reduce Inrush Current and Overshoots
- Thermal Shutdown and Current Limit Protection
- SOA Limiting for High Vin / High Iout Static / Dynamic
- Active Discharge Option Available (upon request)
- Available in WDFN6 2x2 mm Package
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable; Device Temperature Grade 1: -40°C to +125°C Ambient Operating Temperature Range
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Wireless Chargers
- Portable Equipment
- Communication Systems
- In-Vehicle Networking
- Telematics, Infotainment and Clusters
- General Purpose Automotive

Figure 1. Typical Application Schematic

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Figure 2. Simplified Block Diagram

Table 1. PIN FUNCTION DESCRIPTION

Pin No. (WDFN6)	Pin Name	Description
6	IN	Input pin. A small capacitor is needed from this pin to ground to assure stability.
3, EXP	GND	Power supply ground.
4	EN	Enable pin. Driving this pin high turns on the regulator. Driving EN pin low puts the regulator into shut- down mode.
2	NC / ADJ	Fixed Version: No connection. This pin can be tied to ground to improve thermal dissipation or left discon- nected. Adjustable Version: Feedback pin for set-up output voltage. Use resistor divider for voltage selection.
1	OUT	Regulated output voltage pin. A small 1 μF ceramic capacitor is needed from this pin to ground to assure stability.
5	N/C	No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	–0.3 to 24	V
Enable Voltage	V _{EN}	–0.3 to $V_{IN+0.3}$	V
Output Voltage	V _{OUT}	–0.3 to V _{IN+0.3} (max. 6)	V
Output Short Circuit Duration	t _{SC}	Indefinite	s
Maximum Junction Temperature	T _{J(MAX)}	150	°C
Storage Temperature	T _{STG}	–55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Charged Device Model (Note 2)	ESD _{CDM}	1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

- 2. This device series incorporates ESD protection and is tested by the following methods:
- ESD Human Body Model tested per AEC-Q100-002 (EIA/JÉSD22-A114)

ESD Charged Device Model tested per EIA/JESD22-C101, Field Induced Charge Model.

Latch up Current Maximum Rating tested per JEDEC standard: JESD78. Latch-up is not guaranteed on ENABLE pin.

Table 3. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Input Voltage	V _{IN}	2.5	24	V
Junction Temperature	Τ _J	-40	+125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, WDFN6, 2 mm x 2 mm Thermal Resistance, Junction-to-Air	$R_{ heta JA}$	65	°C/W

Table 5. ELECTRICAL CHARACTERISTICS -40°C \leq T_J \leq 125°C; V_{IN} = 2.5 V or (V_{OUT} + 1.0 V), whatever is greater; I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 1 μ F, unless otherwise noted. Typical values are at T_J = +25°C. (Note 3)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
Operating Input Voltage		V _{IN}	2.5		24	V	
Output Voltage Accuracy	$-40^{\circ}C \le T_{J} \le 125^{\circ}C,$	V _{OUT} < 1.8 V	V _{OUT}	-3%		+3%	V
(lixed versions)	$v_{OUT} + 1 v < v_{IN} < 16 v$, 0.1 mA < $I_{OUT} < 300$ mA (Note 5)	$V_{OUT} \ge 1.8 \text{ V}$		-2%		+2%	
Reference Voltage	$-40^{\circ}C \le T_J \le 125^{\circ}C$ $V_{OUT} + 1 V < V_{IN} < 10$	õV	V _{ADJ}		1.2		V
Reference Voltage Accuracy	$-40^{\circ}C \le T_J \le 125^{\circ}C \\ V_{OUT} + 1 V < V_{IN} < 10$	δV	V _{OUT}	-2%		+2%	V
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 16 V, lou	it = 1 mA	Reg _{LINE}		10		mV
Load Regulation	I _{OUT} = 0.1 mA to 300 i	mA	Reg _{LOAD}		10		mV
Dropout Voltage	$V_{DO} = V_{IN} - (V_{OUT(NOM)} - 3\%),$	2.1 V – 2.4 V	V _{DO}		490		mV
	$I_{OUT} = 300 \text{ mA} (\text{Note 4})$	2.5 V – 2.7 V			335	505	1
		2.8 V – 3.2 V			305	475	
		$3.3 \ V - 4.9 \ V$			285	450	1
		5 V			260	395	1
Maximum Output Current	V _{IN} = V _{OUT} + 1 V (Note	I _{LIM}	300		800	mA	
Disable Current	V _{EN} = 0 V, V _{IN} = 5 V	I _{DIS}		0.1	1.0	μA	
Quiescent Current	$I_{OUT} = 0 \text{ mA}, -40^{\circ}\text{C} \le \text{T}_{\text{J}} \le$	l _Q		4.0	8.0	μΑ	
Ground Current	I _{OUT} = 1 mA	I _{GND}		7.0		μΑ	
	I _{OUT} = 10 mA	1		50		1	
	I _{OUT} = 300 mA	1		300		1	
Power Supply Rejection Ratio	$ \begin{array}{l} V_{IN} = 3.5 \ V + 100 \ mVpp \\ V_{OUT} = 2.5 \ V \\ I_{OUT} = 1 \ mA, \ Cout = 1 \ \mu F \end{array} \qquad \begin{array}{l} f = 100 \ Hz \\ f = 1 \ kHz \\ f = 10 \ kHz \\ f = 100 \ kHz \end{array} $		PSRR		70 60 41 35		dB
Output Noise Voltage	V _{OUT} = 1.2 V, I _{OUT} = 10 mA f = 100 Hz to 100 kHz		V _N		36		μV _{rms}
Enable Input Threshold Voltage	Voltage increasing	V _{EN_HI}	1.2	-	-	V	
	Voltage decreasing	V _{EN_LO}	-	-	0.4	1	
ADJ Pin Current	V _{IN} = V _{OUT} + 1 V	I _{ADJ}		0.1	1.0	μA	
EN Pin Current	V _{EN} = 5.5 V	I _{EN}		100		nA	
Active Output Discharge Resistance	V _{IN} = 5.5 V, V _{EN} = 0	Rdis		100		Ω	
Thermal Shutdown Temperature (Note 6)	Temperature increasing from	T _{SD}		165		°C	
Thermal Shutdown Hysteresis (Note 6)	Temperature falling from	T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at $T_J = T_A = T_A$

25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.4. Voltage dropout for voltage variants below 2.1 V is given by minimum input voltage 2.5 V.

5. Respect SOA

6. Guaranteed by design and characterization.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATIONS INFORMATION

The NCV8718 is the member of new family of Wide Input Voltage Range Low Dropout Regulators which delivers Ultra Low Ground Current consumption, Good Noise and Power Supply Rejection Ratio Performance. The NCV8718 incorporates EN pin and soft–start feature for simple controlling by microprocessor or logic.

Input Decoupling (CIN)

It is recommended to connect at least 1 μ F ceramic X5R or X7R capacitor between IN and GND pin of the device. This capacitor will provide a low impedance path for any unwanted AC signals or noise superimposed onto constant input voltage. The good input capacitor will limit the influence of input trace inductances and source resistance during sudden load current changes.

Higher capacitance and lower ESR capacitors will improve the overall line transient response.

Output Decoupling (C_{OUT})

The NCV8718 does not require a minimum Equivalent Series Resistance (ESR) for the output capacitor. The device is designed to be stable with standard ceramics capacitors with values of 1 μ F or greater. The X5R and X7R types have the lowest capacitance variations over temperature thus they are recommended.

Power Dissipation and Heat Sinking

The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. For reliable operation junction temperature should be limited to $+125^{\circ}$ C.

The maximum power dissipation the NCV8718 can handle is given by:

$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = \frac{\left[\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}\right]}{\mathsf{R}_{\theta,\mathsf{J}\mathsf{A}}} \qquad (\mathsf{eq. 1})$$

The power dissipated by the NCV8718 for given application conditions can be calculated from the following equations:

$$\mathsf{P}_{\mathsf{D}} \approx \mathsf{V}_{\mathsf{IN}} \big(\mathsf{I}_{\mathsf{GND}} (\mathsf{I}_{\mathsf{OUT}}) \big) + \mathsf{I}_{\mathsf{OUT}} \big(\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}} \big) \quad \text{ (eq. 2)}$$

or

$$V_{\text{IN(MAX)}} \approx \frac{\mathsf{P}_{\mathsf{D}(\text{MAX})} + \left(\mathsf{V}_{\text{OUT}} \times \mathsf{I}_{\text{OUT}}\right)}{\mathsf{I}_{\text{OUT}} + \mathsf{I}_{\text{GND}}} \qquad (\text{eq. 3})$$

Hints

VIN and GND printed circuit board traces should be as wide as possible. When the impedance of these traces is high, there is a chance to pick up noise or cause the regulator to malfunction. Place external components, especially the output capacitor, as close as possible to the NCV8718, and make traces as short as possible.

Device Part No.	Voltage Option	Marking	Option	Package	Shipping [†]		
NCV8718AMTADJTBG	Adj.	GA	With Active Output Discharge WDFN6 (Pb-Free) Without Active Output Discharge				
NCV8718AMT180TBG	1.8 V	GP					
NCV8718AMT300TBG	3.0 V	GQ					
NCV8718AMT330TBG	3.3 V	GR		č			
NCV8718AMT500TBG	5.0 V	GM		WDFN6 (Pb-Free)	0000 / Tana & Daal		
NCV8718BMTADJTBG	Adj.	GC			3000 / Tape & Reel		
NCV8718BMT180TBG	1.8 V	GU					
NCV8718BMT300TBG	3.0 V	GV					
NCV8718BMT330TBG	3.3 V	GW	Ĭ				
NCV8718BMT500TBG	5.0 V	GE					

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98AON55829E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	the Document Repository. COPY" in red.
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1